

# केंद्रीय भूमि जल बोर्ड

जल संसाधन, नदी विकास और गंगा संरक्षण

विभाग, जल शक्ति मंत्रालय

### भारत सरकार Central Ground Water Board

Department of Water Resources, River Development and Ganga Rejuvenation, Ministry of Jal Shakti Government of India

## AQUIFER MAPPING AND MANAGEMENT OF GROUND WATER RESOURCES BATAULI BLOCK, SURGUJA DISTRICT, CHHATTISGARH

उत्तर मध्य छत्तीसगढ़ क्षेत्र, रायपुर North Central Chhattisgarh Region, Raipur

#### Acknowledgement

The author is grateful to Shri G C Pati, Chairman, Central Ground Water Board for giving opportunity for preparation of Aquifer Map and Management Plan of Batauli Block, Surguja district of Chhattisgarh state. I express my sincere gratitude to Shri G.L.Meena, Member (WQ & WTT) CGWB for giving valuable guidance, encouragement and suggestions during the preparation of this report. The author is thankful to Dr. S.K.Samanta, Head of the Office, Central Ground Water Board, NCCR, Raipur extending valuable guidance and constant encouragement during the preparation of this report. I am extremely grateful to Sh. A.K.Patre, Scientist-D, for his continuous guidance and support during preparation of this report. The author is also thankful to Sh A.K. Biswal, Sc-D and Sh. J.R.Verma, Sc.D for the guidance and suggestions. I would like to acknowledge the help rendered by Smt Prachi Gupta, Sc-B while preparing aquifer map. The author is also thankful to Sh G Sreenath, Sc-B and Sh Sidhanta Sahu, Sc-B for providing the data of ground water exploration in Surguja district. The efforts made by Sh. T.S. Chouhan, Draftsman, for digitization of maps are thankfully acknowledged. The author is also thankful to the state agencies for providing the various needful data. The author is thankful to Technical Section, Data Centre, Chemical Section, Report Processing Section and Library of CGWB, NCCR, Raipur for providing the various needful data.

> Uddeshya Kumar Scientist-B (JHG)

### AQUIFER MAPPING AND MANAGEMENT PLAN FOR BATAULI BLOCK (SURGUJA DISTRICT), CHHATTISGARH

### **CONTENTS**

|           |       | <u>Topic</u>                      |                   |                                      | <b>Pages</b> |
|-----------|-------|-----------------------------------|-------------------|--------------------------------------|--------------|
| 1.        | Sali  | ent Information                   |                   |                                      | 01-15        |
|           |       | About the area                    |                   |                                      |              |
|           |       | Population                        |                   |                                      |              |
|           |       | Rainfall                          |                   |                                      |              |
|           |       | Agriculture and Irrigation        | วท                |                                      |              |
|           |       | Groundwater Resource              |                   | and Extraction                       |              |
|           |       |                                   | Availability      |                                      |              |
|           |       | Water Level Behaviour             |                   |                                      |              |
| 2.        | Aq    | uifer Disposition                 |                   |                                      | 16-18        |
|           |       | Number of aquifers                |                   |                                      |              |
|           |       | Aquifer wise characteri           | stics             |                                      |              |
| 3.        | Gro   | ound water resource, ex           | traction, con     | tamination and other issues          | 19           |
|           |       | Aquifer wise resource a           | vailability an    | d extraction                         |              |
|           |       | Categorisation                    | ,                 |                                      |              |
|           |       | -                                 |                   | d contouringtion                     |              |
|           |       | Chemical quality of grou          | ind water an      | d contamination                      |              |
| 4.        | Gro   | ound Water Resource er            | hancement         |                                      | 19           |
| 5.        | Iss   | ues                               |                   |                                      | 19           |
| 6.        | Ma    | inagement plan                    |                   |                                      | 20           |
| 7.        | Со    | nclusion                          |                   |                                      | 21           |
|           |       |                                   |                   |                                      |              |
|           | REVIA | FIONS                             |                   |                                      |              |
| DW        |       | Dugwell                           | m bgl             | meter below ground level             |              |
| EC        |       | Electrical Conductivity           | m2/day            | Square meter/ day<br>cubic meter/day |              |
| GS<br>GW/ | ~~~   | Gabion structures<br>Ground Water | m3/day<br>MCM/mcm | Million Cubic Meter                  |              |
| ha        | 5W    | Hectare                           | mm                | Milimeter                            |              |
| Ham       |       | Hectare meter                     | OE                | Overexploited                        |              |
|           |       |                                   |                   |                                      |              |

litres per minuteSTPSewage Treatment Plantliters per secondTTransmissivity

Sq Km

Square Kilometer

liters per second T Transmiss meter TW Tubewell

Handpump (Shallow)

ΗP

lpm Ips

m

#### AQUIFER MAP AND MANAGEMENT PLAN: BATAULI BLOCK

#### 1. Salient Information:

<u>About the area:</u> Batauli Block is situated on the eastern part of Surguja district of Chhattisgarh and is bounded in the west by Mainpat block and Ambikapur Block, in the north by Lundra block, in the south by Sitapur block and in the east by Jashpur district. The block area lies between 22.83 and 23.06 N latitudes and 83.33 and 83.55 E longitudes. The geographical extension of the study area is 401.73 sq. km representing around 7.74 % of the district's geographical area. Administrative map of the block is shown in Fig. 1. Geomorphologically northern part comprises of denudational plateau, eastern and southern part comprises pediment and western part comprises region of plateau. Geomorphology map is shown in Figure 2. The major drainage of the block includes Mand river and part of Mahanadi Basin. Drainage map shown in Fig. 3.

<u>Population</u>: The total population of Batauli block as per 2011 Census is 70244. The population break up i.e. male- female and rural- urban is given below -

| Block   | Total population | Male  | Female | Rural population | Urban<br>population |
|---------|------------------|-------|--------|------------------|---------------------|
| Batauli | 70244            | 35094 | 35150  | 70244            | 0                   |

Table- 1: Population Break Up

Source: CG Census, 2011

<u>Growth rate</u>: The decadal growth rate of the block is 16.40 as per 2011 census.

<u>Rainfall</u>: The study area receives rainfall mainly from south-west monsoon. About 87% of the annual rainfall is received during June to September and July and August are the months of maximum precipitation. The area gets some rainfall during winter season also. Average annual rainfall in the study area is (Average of the last five years i.e. 2013 to 2017) 762.74 mm with 70 to 80 rainy days.

| Table-2: Rainfall data in Batauli block | in mm |
|-----------------------------------------|-------|
|-----------------------------------------|-------|

| Year            | 2013  | 2014  | 2015  | 2016  | 2017  |
|-----------------|-------|-------|-------|-------|-------|
| Annual rainfall | 740.1 | 615.4 | 735.8 | 757.4 | 965.0 |

Source: IMD

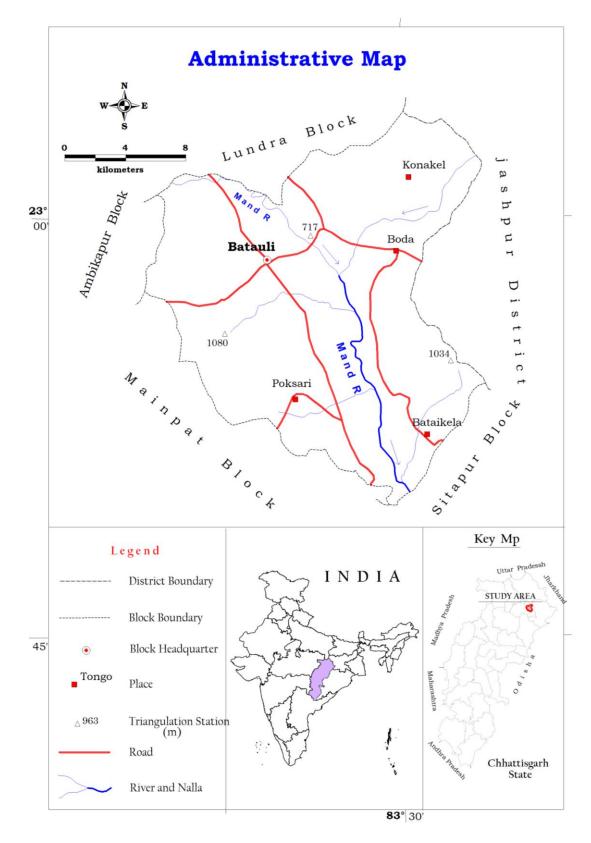



Figure 1 Administrative Map of Batauli Block

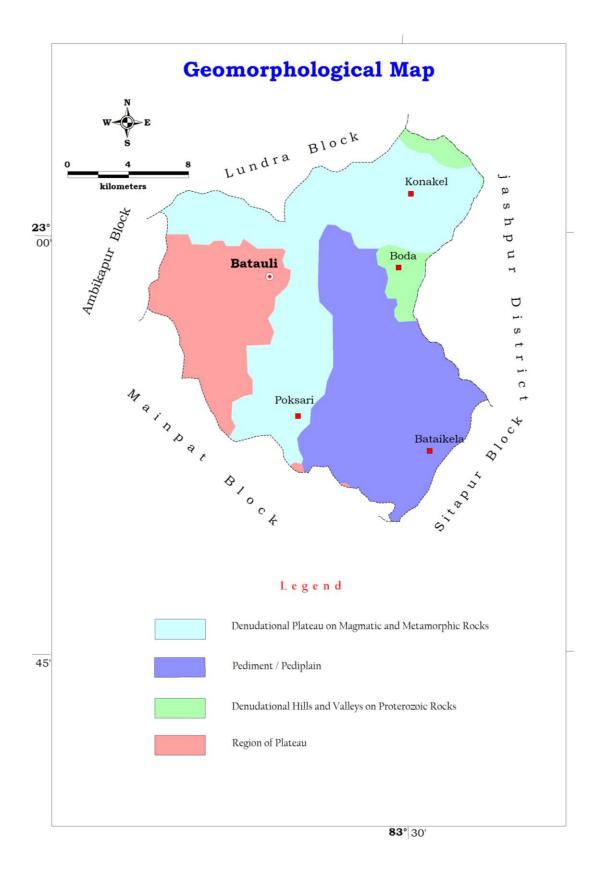
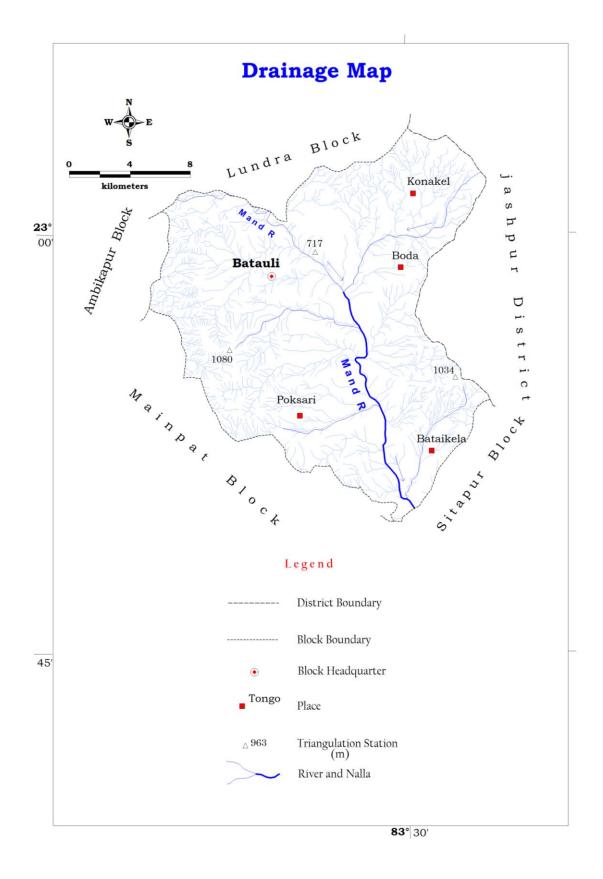




Figure 2 Geomorphology Map of Batauli Block





<u>Agriculture and Irrigation</u>: Agriculture is practiced in the area during Kharif and Rabi season every year. During the Kharif, cultivation is done through rainfall while during the Rabi season; it is done through ground water as well as partly through surface water like canals and other sources. The groundwater abstraction structures are generally Dugwells, Borewells /tubewells. The principal crops in the block are Paddy, Wheat, Vegetables and pulses.

In some areas, double cropping is also practiced. The agricultural pattern, cropping pattern and area irrigated data of Batauli block is given in Table 3 (A, B, C, D, and E).

| Total<br>geographical<br>area | Forest<br>area | Area not<br>available<br>for<br>cultivation | Nonagricultural<br>& Fallow land | Agricultural<br>Fallow land | Net<br>sown<br>area | Double<br>cropped<br>area | Gross<br>cropped<br>area |
|-------------------------------|----------------|---------------------------------------------|----------------------------------|-----------------------------|---------------------|---------------------------|--------------------------|
| 40173                         | 7021.0         | 1857                                        | 3141                             | 3684                        | 18316               | 1384                      | 19700                    |

#### Table 3 (A): Land use and Agricultural pattern (in ha)

#### Table 3 (C): Cropping pattern (in ha)

| Khovif | Dahi |       | Cer   | eal                 |      | Dulasa | es Tilhan Fruits and | Guarana    | Mirch     | Othors |        |
|--------|------|-------|-------|---------------------|------|--------|----------------------|------------|-----------|--------|--------|
| Kharif | Rabi | Wheat | Rice  | Jowar<br>&<br>Maize | Medo | Pulses | Tiinan               | Vegetables | Sugarcane | Masala | Others |
| 17892  | 1808 | 474   | 14466 | 643                 | 170  | 1071   | 1585                 | 732        | 418       | 115    | 27     |

Table 3 (D): Area irrigated by various sources (in ha)

| No. of<br>canals<br>(private<br>and<br>Govt.) | Irrigated<br>area | No.<br>of<br>bore<br>wells/<br>Tube<br>wells | Irrigated<br>area | No.<br>of<br>dug<br>wells | Irrigated<br>area | No. of<br>Talabs | Irrigated<br>area | Irrigated<br>area by<br>other<br>sources | Net<br>Irrigated<br>area | Gross<br>irrigated<br>area | % of<br>irrigated<br>area<br>wrt. Net<br>sown<br>area |
|-----------------------------------------------|-------------------|----------------------------------------------|-------------------|---------------------------|-------------------|------------------|-------------------|------------------------------------------|--------------------------|----------------------------|-------------------------------------------------------|
| 6                                             | 76                | 114                                          | 28                | 22                        | 43                | 61               | 10                | 1163                                     | 1320                     | 1377                       | 7.08                                                  |

Table 3 (E): Statistics showing Irrigation by Ground water

| Block   | Net Irrigated<br>Area | Net Irrigated Area<br>by ground water | Percentage of Area<br>Irrigated by ground<br>water wrt Net<br>Irrigated Area |
|---------|-----------------------|---------------------------------------|------------------------------------------------------------------------------|
| Batauli | 1320                  | 71                                    | 5.37                                                                         |

<u>Groundwater Resource Availability and Extraction</u>: Based on the resource assessment made, the resource availability in aquifer wise in Batauli block is given in the table-4.

|                         | G                         | round Water Re                    | echarge(Ham)                 | )                                 |                                   |                                |
|-------------------------|---------------------------|-----------------------------------|------------------------------|-----------------------------------|-----------------------------------|--------------------------------|
|                         | Monsoor                   | n Season                          | Non-mons                     | oon season                        | Total Annual                      | Total                          |
| Assessment<br>Unit Name | Recharge<br>from Rainfall | Recharge<br>from Other<br>Sources | Recharge<br>from<br>Rainfall | Recharge<br>from Other<br>Sources | Ground Water<br>(Ham)<br>Recharge | Natural<br>Discharges<br>(Ham) |
| Batauli                 | 3694.17                   | 121.86                            | 268.77                       | 598.98                            | 4683.78                           | 457.82                         |

## Table – 4 (B): Ground Water Dynamic Resource (Unconfined Aquifer) of Batauli block in

| Ham                                                            |                                             |                   |                 |                     |                                                     |                                               |                                                   |                                                               |
|----------------------------------------------------------------|---------------------------------------------|-------------------|-----------------|---------------------|-----------------------------------------------------|-----------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|
|                                                                | Current Annual Ground Water Extraction(Ham) |                   |                 |                     | Annual                                              |                                               |                                                   |                                                               |
| Annual<br>Extractabl<br>e Ground<br>Water<br>Recharge<br>(Ham) | Irrigation<br>Use                           | Industrial<br>Use | Domestic<br>Use | Total<br>Extraction | Allocatio<br>n for<br>Domestic<br>Use as<br>on 2025 | Ground<br>Water<br>Availability<br>for future | Stage of<br>Ground<br>Water<br>Extractio<br>n (%) | Categorizati<br>on<br>(OE/Critical/<br>Semicritical/<br>Safe) |
| 4225.96                                                        | 1410.50                                     | 0.00              | 168.97          | 1579.47             | 189.14                                              | 2626.32                                       | 37.38                                             | Safe                                                          |

Table – 4 (C): Ground Water Static Resource (Unconfined Aquifer) and Dynamic Resource (Confined Aquifer) of Batauli block in Ham

| Static                 | Difference                           | Storativity | Dynamic Ground                                 | Bottom                                        | In storage                                                          | Sum of                                                                                                |
|------------------------|--------------------------------------|-------------|------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Resources<br>Area (Ha) | Piezometric<br>Head (Pre-<br>post) m | (S)         | Water Resource of<br>Confined Aquifer<br>(Ham) | level of the<br>top<br>confining<br>layer (m) | Ground<br>Water<br>Resource<br>of<br>Unconfined<br>Aquifer<br>(Ham) | Dynamic GW<br>(Confined<br>Aquifer) and In<br>storage GW<br>(Unconfined<br>Aquifer)<br>resource (Ham) |
| 40173                  | 8.03                                 | 0.00025     | 79.4                                           | 200                                           | 7479.41                                                             | 7558.81                                                                                               |

Existing and Future Water Demand (2025): The existing draft for irrigation in the area is 1410.50 Ham while the total extraction for all uses is 1579.47 Ham. At present scenario to meet the future demand for water, a total quantity of 2626.32 ham of ground water is available for future use.

<u>Water Level Behavior</u>: (i) Pre- monsoon water level: In the pre-monsoon period, it has been observed that in Batauli block, water level in dugwells (phreatic aquifer) varies between 4.90 to 8.90 mbgl with average water level of 6.38 mbgl. In semiconfined aquifer, the maximum water level is 20.70 mbgl; the average water level is 15.18 mbgl.

| Block Name | Phreatic Ac |      | fer  |
|------------|-------------|------|------|
| DIOCK Name | Min         | Max  | Avg  |
| Batauli    | 4.90        | 8.90 | 6.38 |

Table 5A: Phreatic aquifer Depth to Water Level in mbgl (Pre-monsoon)

Table 5B: Semiconfined Aquifer Depth to Water Level in mbgl (Pre-monsoon)

| Block Name | Semi        | confined Aquifer |       |  |
|------------|-------------|------------------|-------|--|
| block Name | Min Max Avg |                  |       |  |
| Batauli    | 11.75       | 20.70            | 15.18 |  |

(ii) Post- monsoon water level: In the post-monsoon period, it has been observed that the water level varies from 2.00 to 6.50 mbgl with an average of 3.49 mbgl in phreatic aquifer. In semiconfined/fractured formation, the post monsoon water level variation range is 3.85 to 11.93 mbgl with average of 7.15 mbgl.

Table 5C: Phreatic Aquifer Depth to Water Level in mbgl (Post-monsoon)

| Block Name   | Phreatic Aquifer |      |      |  |
|--------------|------------------|------|------|--|
| DIOCK Maille | Min Max Avg      |      |      |  |
| Batauli      | 2.00             | 6.50 | 3.49 |  |

Table 5D: Semiconfined Aquifer Depth to Water Level in mbgl (Post-monsoon)

| Block Name | Semi | quifer |      |
|------------|------|--------|------|
| BIOCK Name | Min  | Max    | Avg  |
| Batauli    | 3.85 | 11.93  | 7.15 |

(iii) Seasonal water level fluctuation: The water level fluctuation data indicates that in Batauli block, water level fluctuation in phreatic aquifer varies from 0.50 to 3.85 m with an average fluctuation of 2.90 m. Water level fluctuation in semiconfined Aquifer varies from 6.88 to 8.86 m with an average fluctuation of 8.03 m.

| Block Name | Phreatic Aquifer |      |      |  |
|------------|------------------|------|------|--|
| DIOCK Name | Min              | Max  | Avg  |  |
| Batauli    | 0.50             | 3.85 | 2.90 |  |

Table 5E: Phreatic Aquifer Depth to Water Level Fluctuation (meter)

| Table 5F: Semiconfined | Aquifer Depth | to Water Level | Fluctuation (meter) |
|------------------------|---------------|----------------|---------------------|
|                        | Aquiler Depti |                |                     |

| Block Name | Semiconfined Aquifer |      |      |  |  |
|------------|----------------------|------|------|--|--|
|            | Min Max Avg          |      |      |  |  |
| Batauli    | 6.88                 | 8.86 | 8.03 |  |  |

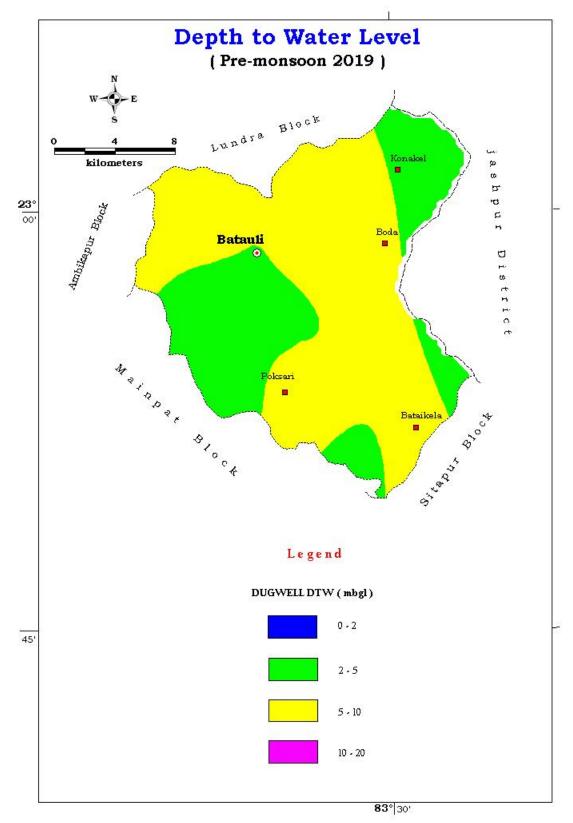



Figure 4 Depth to water level map Phreatic Aquifer (Pre-monsoon)

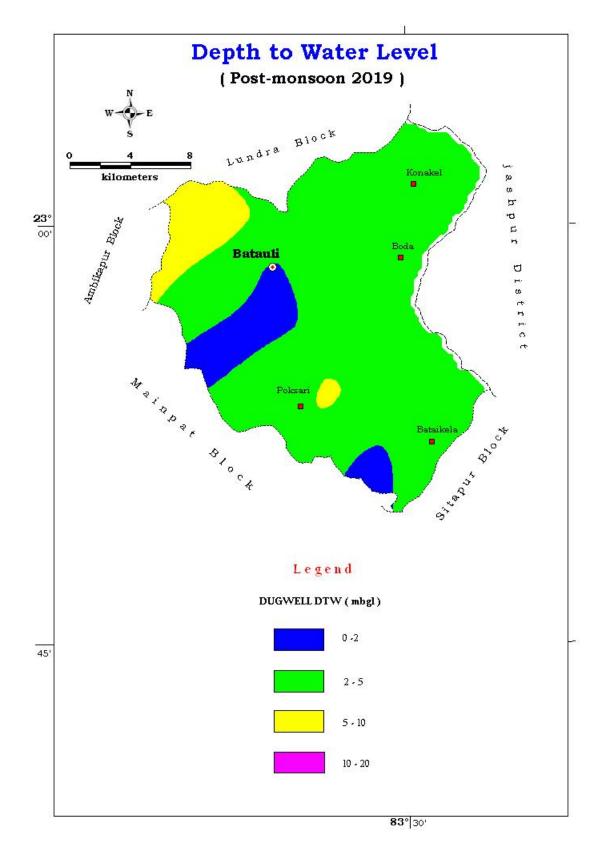



Figure 5 Depth to water level map Phreatic Aquifer (Post-monsoon)

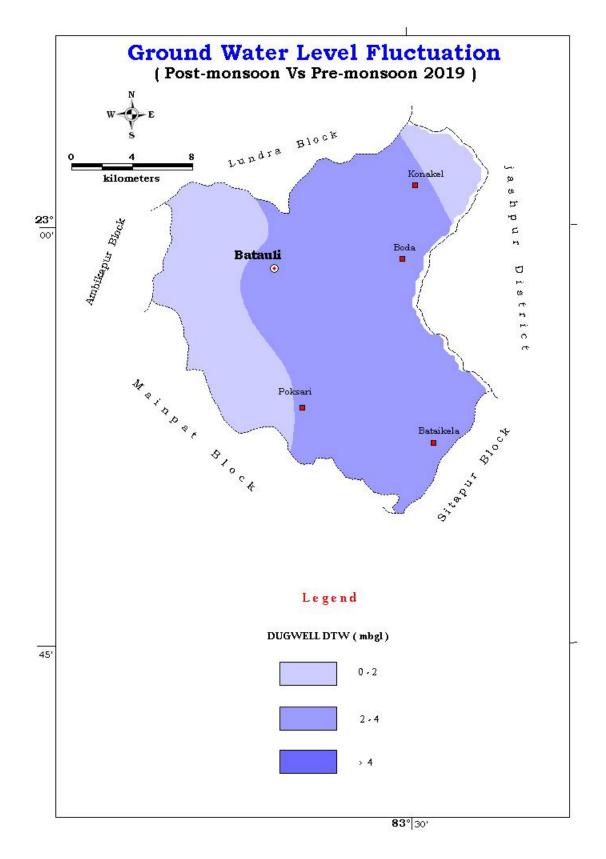



Figure 6 Depth to water level fluctuation map of Phreatic Aquifer

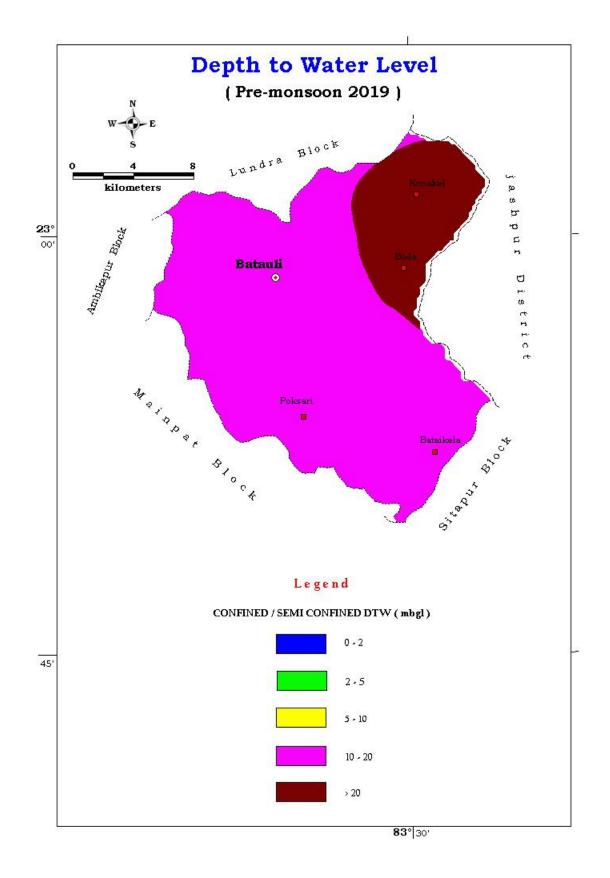



Figure 7 Depth to water level map Semiconfined Aquifer (Pre-monsoon)

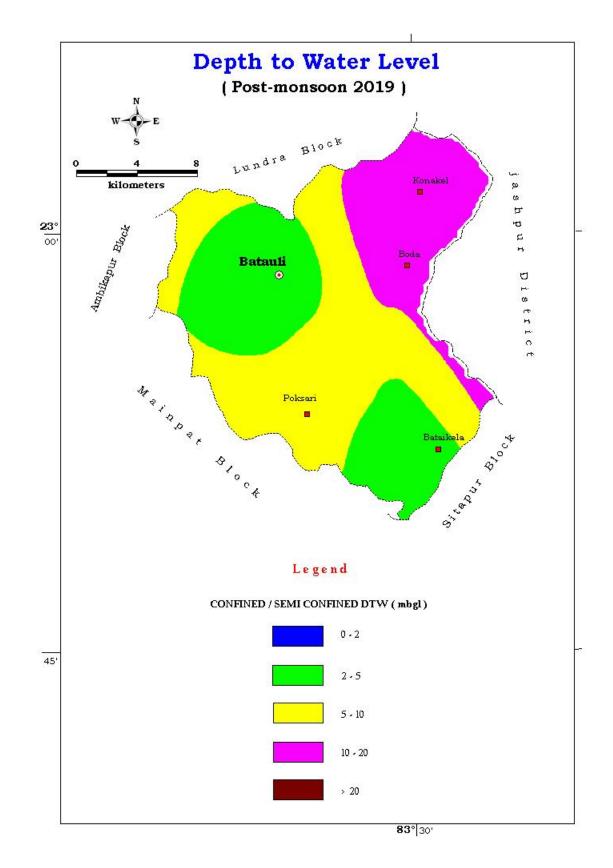



Figure 8 Depth to water level map Semiconfined Aquifer (Post-monsoon)

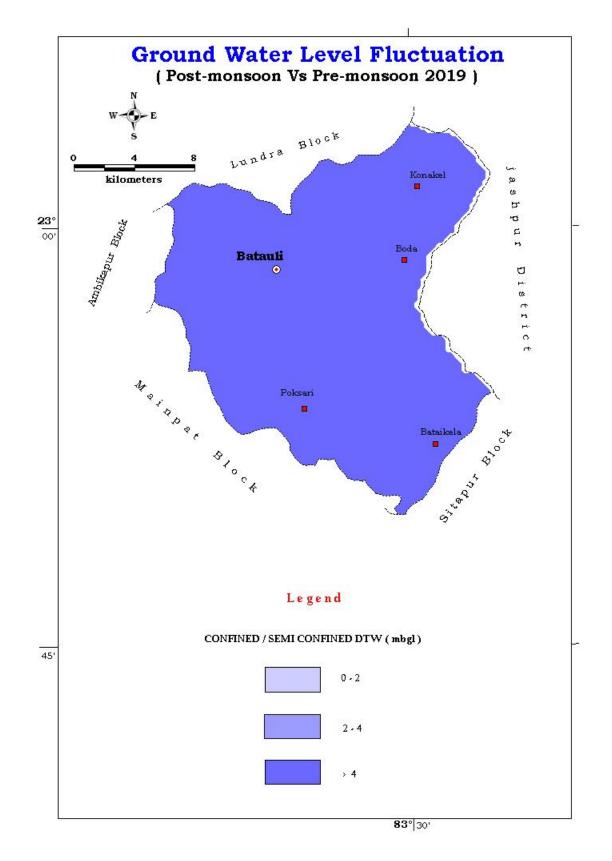



Figure 9 Depth to water level fluctuation map of Semiconfined Aquifer

(iv) <u>The long term water level trend</u>: There is no significant decline in water level in pre and post monsoon period in all observed NHS networks.

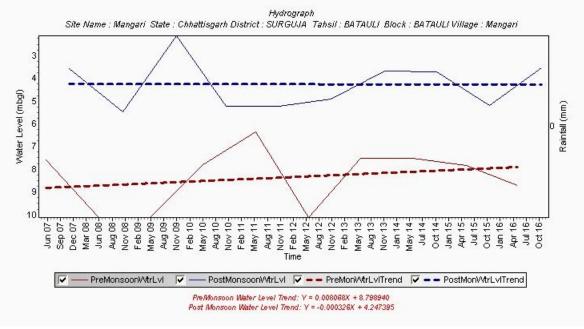



Figure 10 a: Hydrograph of Mangari Village, Batauli block

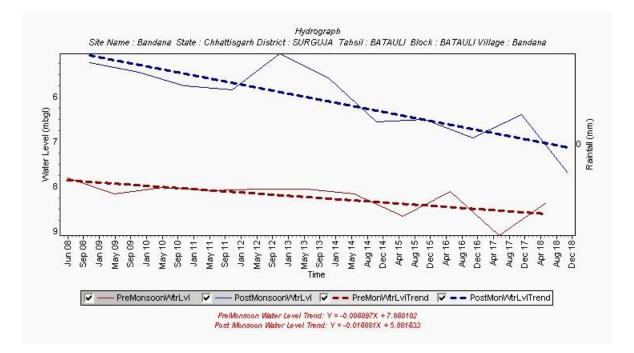



Figure 10 b: Hydrograph of Bandana Village, Batauli block

#### 2. Aquifer Disposition:

<u>Number of Aquifers</u>: There is one major aquifer system viz. Granite Aquifer system and. Granite aquifer system has the shallow aquifer and deeper aquifer which occurs in phreatic and semiconfined condition respectively. Although there are few patches of unclassified metamorphic, biotite schist and other rocks.

#### 3-d aquifer disposition and basic characteristics of each aquifer:

Granite Aquifer System: Groundwater occurrence is largely limited to secondary permeability, such as weathered zones, joints, fractures or faults. The potential of weathered zones depends on the degree and depth of weathering and associated fracturing, and the saturated thickness. The aquifers are generally discontinuous, and often confined. Higher yields are obtained where thick weathered zones are associated with bedrock fracturing.

The average thickness of the weathered portion in the area is around 20 m. In general, the discharge varies from meagre to 12.7 lps. In block maximum discharge was at Chiranga village where total 04 set of fracture zone identified having the cumulative discharge of 12.7 lps. At 104 mbgl last water zone encountered. The average drawdown of the formation is around 29 m. DTH drilling technique is preferred in Granite aquifer where well construction is required depending upon the thickness of weathered zone. Water zone has been encountered up to 158 mbgl in the formation. Transmissivity range observed is upto 43.72 sq meter/day.

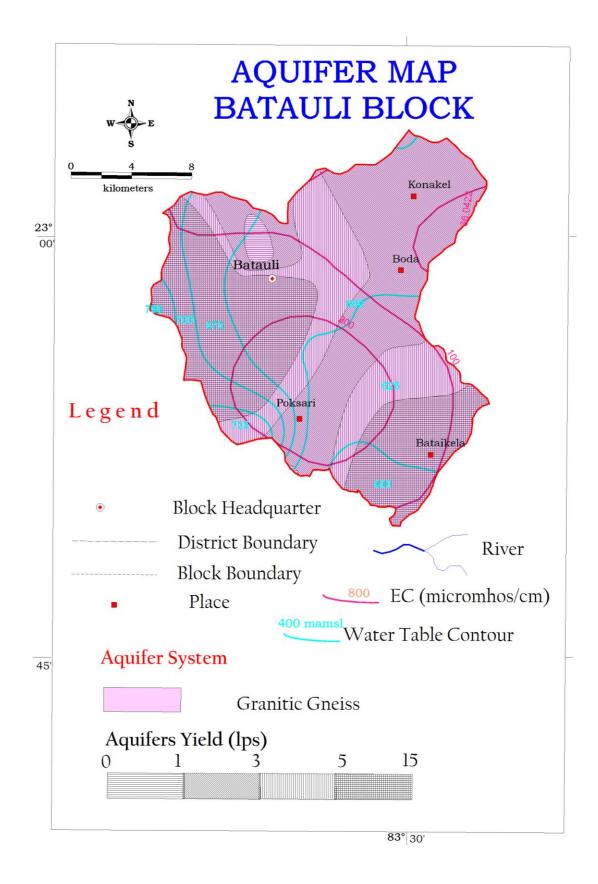
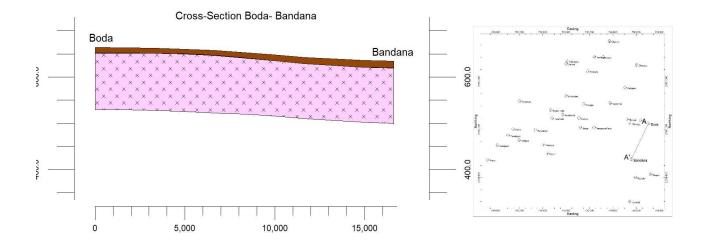
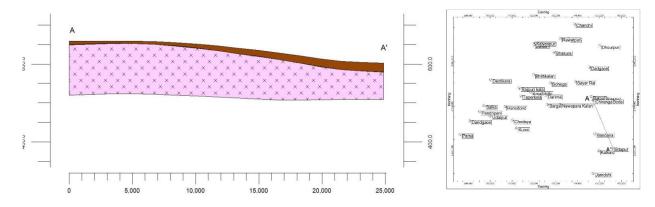





Figure 11: Aquifer map of Batauli block



Cross-Section A- A' (Batauli- Sitapur)



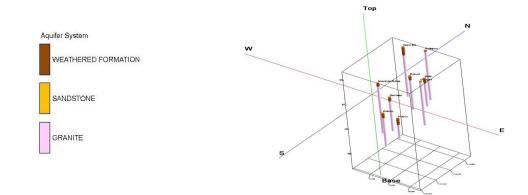



Figure-12, Disposition of Aquifer, Batauli Block

#### 3. Ground water Resource, extraction, contamination and other issues:

Resource availability of Batauli block is given in the table -4 where net ground water availability for future use is 2626.32 ham. The extraction details and the future scenario (2025) along with the categorisation are also depicted in the table-4.

| District | Block   | Stage of Ground water<br>development (%) | Categorisation |
|----------|---------|------------------------------------------|----------------|
| Batauli  | Batauli | 37.38                                    | Safe           |

Categorisation: Batauli block falls in safe category. The stage of Ground water development is 37.38 %. The Annual Extractable Ground Water Recharge is 4225.96 ham. The Ground water draft for all uses is 1579.47 Ham.

<u>Chemical Quality of Ground water and Contamination</u>: Throughout the study area, the water samples from both dugwell and handpumps were collected and chemical analysis has been completed (Annexure I). Several villages have Iron and Flouride concentration more than permissible limit. Overall ground water of the study area is suitable for the drinking, agriculture and industrial purpose. In Batauli at 9 villages Fluoride contamination and at 23 villages Iron contamination reported. (Source: <u>https://ejalshakti.gov.in/IMISReports/MIS.html</u>)

#### 4. Ground Water Resource enhancement:

Aquifer wise space available for recharge and proposed interventions:

Table -8: Summarised detail of Volume of porous space available for recharge

| Major<br>Aquifer  | Area<br>Identified<br>for Artificial<br>Recharge<br>(Sq. Km) | Sp. Yield for the formation | Volume of vadose zone<br>available for<br>recharge(mcm) | Sub surface storage potential (mcm) |  |  |
|-------------------|--------------------------------------------------------------|-----------------------------|---------------------------------------------------------|-------------------------------------|--|--|
| Granite<br>gneiss | 204.02                                                       | 0.02                        | 322                                                     | 6.436                               |  |  |

(Aquifer wise)

#### 5. Issues:

- (i) During summer, dugwells in villages becomes dry at many locations. Several handpumps also stop yielding water. The aquifer itself is a low yielding one.
- (ii) In Granite aquifer system potential zone for ground water is related with occurrence of fracture, so drilling a high yield well is always a challenge. Proper scientific study coupled with geophysical investigation may minimize the failure of well.
- (iii) Fluoride and Iron filter plant may be installed in the villages having higher value of contaminants.

#### 6. Management Plan:

- (i) It has been observed during fieldwork, there is colossal wastage of groundwater through private well and public water supply system. So, Information, Education and Communication (IEC) activities need to be organized to sensitize people on the issues of depleting groundwater resource. Massive awareness campaigns are essential to aware people about the importance of community participation in saving water.
- (ii) Desiltation of existing Tanks and Talabs to be carried out for efficient storage of rainwater. Also Rain water harvesting structures may be constructed in villages to reduce stress on groundwater.
- (iii) It has been observed that the demand of ground water is increasing for irrigation, industrial and domestic uses. At locations where water level is declining, we have to go for artificial recharge on a long-term sustainability basis. Artificial Recharge structures may be constructed at suitable locations especially in the areas where the water level remains more than 3m in the post-monsoon period in this block to arrest the huge non-committed run-off and augment the ground water storage in the area. The different types of artificial structures feasible in the block are described in table-9.

| Name of Block | Area Feasible<br>for recharge<br>(sq.km) | Volume of Sub<br>Surface Potential for<br>Artificial recharge<br>(MCM) | Percolation<br>tank | Nalas<br>bunding<br>cement | /Dug well/<br>tube<br>well/Recharge | Gully<br>plugs<br>Gabion |
|---------------|------------------------------------------|------------------------------------------------------------------------|---------------------|----------------------------|-------------------------------------|--------------------------|
| Batauli       | 204.02                                   | 1.924                                                                  | 4                   | 14                         | 33                                  | 44                       |
|               |                                          | echarge Capacity<br>MCM)/structure                                     | 0.2192              | 0.0326                     | 0.00816                             | 0.0073                   |

Table-9: Types of Artificial Recharge structures feasible

- (iv) Fluoride and Iron filter plant may be installed in the villages having higher value of contaminants.
- (v) In urban areas STP may be installed for the treatment of sewage water in proper numbers to avoid contamination of ground water. Treatment of sewage water in village through soak pit for the individual houses and Seechewal model or similar model for community level may be adopted to avoid contamination of ground water. Treated water may also be reused for irrigation and other industrial purposes.

(vi) Since the stage of development in the block is 37.38 %. There is scope of utilizing more ground water for future irrigation purpose. Additional number of Ground water abstraction structure may be developed for the effective utilization of ground water resources in the block. The ground water is presently developed through dug wells and tube wells. Yield potential for the block has been shown in Aquifer map (fig 11). Sites for wells need to be selected only after proper scientific investigation. The ground water quality also needs to be ascertained and the wells used for water supply should be first checked for Iron, Fluoride and other pollutants.

| Net<br>Groundwater<br>availability<br>(ham) | Stage of<br>ground<br>water<br>Developm<br>ent (%) | Present<br>ground<br>water<br>draft<br>(Ham) | Ground<br>water draft<br>at 70% stage<br>of<br>developmen<br>t (ham) | Surplus ground<br>water at<br>present Stage of<br>Development<br>(ham) | Number of TW<br>Recommended in each<br>block (Assuming unit<br>draft as 1.6<br>ham/structure/year) | Number of DW<br>Recommended in<br>each block (Assuming<br>unit draft as 0.72<br>ham/structure/year) |
|---------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 4225.96                                     | 37.38                                              | 1579.47                                      | 2958.17                                                              | 1378.70                                                                | 517                                                                                                | 766                                                                                                 |

Table 10: Potential of Additional GW abstraction structure creation

#### 7. Conclusion:

For effective utilization of Ground water existing draft for irrigation may be coupled with micro irrigation system. Change in irrigation pattern, optimum use of available resource, use of ground water potential created after artificial recharge can lead to groundwater savings and increase in gross cropped area of the block (Table: 11).

Table 11: Detail of groundwater saved through change in cropping pattern and other interventions

| Block   | Existing   | Additional   | GW         | Development | Additional | Additional   | Percent  |
|---------|------------|--------------|------------|-------------|------------|--------------|----------|
|         | Gross      | Saving of GW | Potential  | by new GW   | GW         | Irrigation   | increase |
|         | Ground     | after using  | created    | abstraction | irrigation | potential    | in Crop  |
|         | Water      | Micro        | after      | structure   | Potential  | creation for | area     |
|         | Draft for  | Irrigation   | Artificial |             | created in | Maize/       | compare  |
|         | Irrigation | methods in   | recharge   |             | Ham        | wheat in     | to Gross |
|         | in Ham     | Ham          | structure  |             |            | winter       | cropped  |
|         |            | (Assuming 30 | in Ham     |             |            | season in Ha | area     |
|         |            | % saving)    |            |             |            | (Assuming    |          |
|         |            |              |            |             |            | 500 mm       |          |
|         |            |              |            |             |            | water        |          |
|         |            |              |            |             |            | requirement) |          |
| Batauli | 1410.50    | 423.15       | 192.37     | 1378.70     | 1937.79    | 3875.58      | 19.67%   |
|         |            |              |            |             |            |              |          |